High School Maths Examples and Questions

to top menu   
go backback
   
to searchsearch
   to Algebra   

Answers − Simultaneous Equations by Substitution

1.   Solve these equations by substitution

   6x + y = 30
   5x − y = 14

  i. Label each equation

  Equation         Label
  6x + y=30         (1)
  5x − y=14         (2)

  ii. Rearrange equation (1) to make y the subject

   6x + y=30        note (3)
  6x= − 6x         
  
            y = 30 − 6x

   Note: (3) inverse of + 6x is − 6x

  iii. Substitute y = 30 − 6x into equation (2):

  5xy=14        
  5x(30 − 6x)=14       note (4)
  5x30  +  6x=14        

   Note: (4) − ( − 6) = + 6

  iv. Rearrange to find the value of x

  5x30 + 6x=14      note (5)
    + 30=+ 30       
  
             11x= 44      note (6)
           ÷11=÷11       
  
                 x=   4

   Note: (5) inverse of − 30 is + 30
   Note: (6) inverse of × 11 is ÷ 11

  v. put x = 4 int0:

So x = 4 and y = 6

2.   Solve these equations by substitution

   5a + 2b = 54
   4a + b = 36

  answer: a = 6 and b = 12

3.   Solve these equations by substitution

   8x + 3y = 47
   3x − y = 24

  i. Label each equation

  Equation         Label
  8x + 3y=24         (1)
  3x − y=24         (2)

  ii. Rearrange equation (2) to make y the subject

   3x y=  24        note (3)
    + y=   + y         
  
   3x  = 24+y      note (4)
    24=24         
  
   3x24=       +y

   Note: (3) inverse of − y is + y
   Note: (4) inverse of + 24 is − 24

  So      y = 3x − 24

  iii. Substitute y = 3x − 24 into equation (1):

  8x+3(y)=47
  8x+3(3x − 24)=47
  8x+  9x  −  72=47

  iv. Rearrange to find the value of x

  8x+9x72=  47      note (5)
     +72= +72       
  
     17x      = 119      note (6)
    ÷17      =÷17       
  
          x      =      7

   Note: (5) inverse of − 72 is + 72
   Note: (6) inverse of × 17 is ÷ 17

  v. put x = 7 into:

So x = 7 and y = −3

4.   Solve these equations by substitution

   9x + y = 50
   7x − y = 78

  answer: x = 8 and y = −22

5.   Solve these equations by substitution

   5a + 3b = 18
   4a − 5b = 44

  i. Label each equation

  Equation         Label
  5a + 3b=18         (1)
  4a − 5b=44         (2)

  ii. Rearrange equation (1) to make b the subject

   5a+3b=18        note (3)
  5a  = 5a       
  
         3b=(185a)     note (4)
        ÷3= ÷3      
  
  So      b=

   Note: (3) inverse of + 5a is − 5a
   Note: (4) inverse of × 3 is ÷ 3

  iii. Put b = into (2):
  4a−5(b)=44   
  4a−5()= 44  note(5)
  12a 5(18 − 5a)=132  note(6)
   
  12a90 + 25a=132  note(7)

   Note: (5) inverse of × 3 is ÷ 3
   Note: (6) multiply both sides by 3
   Note: (7) expand the brackets by multiplying

  iv. Rearrange to find the value of a

  12a90+25a=132     note (8)
   +90  =+90      
  
                37a=222     note (9)
              ÷37=÷37      
  
                   a=     6

Note: (8) inverse of − 90 is + 90
Note: (9) inverse of × 37 is ÷ 37

  v. Put a = 6 into:

So a = 6 and b = −4

6.   Solve these equations by substitution

   7x + y = 67
   5x + y = 45

  answer: x = 11 and y = −10

7.   Solve these equations by substitution

   11x + y = 90
   8x + 7y = 78

  i. Label each equation

  Equation         Label
  11x + y=90         (1)
  8x + 7y=78         (2)

  ii. Rearrange equation (1) to make y the subject

   11x+y=90      note (3)
  11x  = − 11x       
  
             y=90−11x

   Note: (3) inverse of + 11x is − 11x

  iii. Substitute y = 90 − 11x into equation (2):

  8x+7(y)=78
  8x+7(90 − 11x)=78
  8x+ 630  −  77x =78

  iv. Rearrange to find the value of x

  8x+63077x=78   note (4)
   630  =−630    
  
              −69x=−552     note (5)
              ÷69=÷69      
  
                    x=     8

   Note: (4) inverse of + 630 − 630
   Note: (5) inverse of × 69 is ÷ 69

  v. Put x = 8 into:

So x = 8 and y = 2

8.   Solve these equations by substitution

   12x + 4y = 84
   7x + 2y = 56

  answer: x = 14 and y = −21

to top menu   
go backback
   
to searchsearch
   back to:   examples    questions