High School Maths Examples and Questions

to top menu   
go backback
   
to searchsearch
   to Algebra   

Answers − Simultaneous Equations by Elimination

1.   Solve these equations by elimination

   6x + y = 30
   5x − y = 14

 i. Label each equation

  Equation         Label
  6x + y=30         (1)
  5x − y=14         (2)

 ii. Eliminate the variable y by adding the two equations

      6x + y = 30    (1)
      5x − y = 14    (2)
  
     11x     =44    (1) + (2)

 iii. Rearrange to find the value of x

    11x =  44       note (3)
  ÷11 = ÷11        
  
        x =    4

   Note: (3) inverse of × 11 is ÷ 11

 iv. Put the value x = 4 into equation (1)

 v. Rearrange to find the value of y

   24 + y= 30    note (4)
  24=24     
  
            y=    6

   Note: (4) inverse of + 24 is − 24

 vi. Verify by putting the value x = 4 and y = 6 into equation (2)

2.   Solve these equations by elimination

   5a + 2b = 54
   4a + b = 36

  answer: a = 6 and b = 12

3.   Solve these equations by elimination

   8x + 3y = 47
   3x − y = 24

 i. Label each equation

  Equation         Label
  8x+3y=47         (1)
  3xy=24         (2)

 ii. Eliminate the y term, by changing one of the equations so that the y terms equate:

      9x − 3y=   72    note (3)
  +8x + 3y=+47    note (1)
  
   17x      = 119    note (4)
  ÷17      =÷17     
  
       x      =      7

   Note: (3) = 3 × equation (2)
   Note: (1) add equation (1)
   Note: (4) inverse of × 17 is ÷ 17

 iii. Put the value x = 7 into equation (1)

 iv. Rearrange to find the value of y

      56 + 3y= 47     note (5)
  56=56      
  
              3y=9      note (6)
  ÷3=÷3       
  
                y=3

   Note: (5) inverse of + 56 is − 56
   Note: (6) inverse of × 3 is ÷ 3

 v. Verify put the value x = 7 and y = −3 into equation (2)

4.   Solve these equations by elimination

   9x + y = 50
   7x − y = 78

  answer: x = 8 and y = −22

5.   Solve these equations by elimination

   5a + 3b = 18
   4a − 5b = 44

 i. Label each equation

  Equation         Label
  5a+3b=18         (1)
  4a5b=44         (2)

 ii. Eliminate the b term, by changing both of the equations so that the b terms equate:

    25a + 15b=  90     note (3)
    12a − 15b=  132     note (4)
  
   37a        = 222     (3)+(4)
  ÷37        =÷37     note (5)
  
       a        =      6

   Note: (3) = 5 × equation (1)
   Note: (4) = 3 × equation (2)
   Note: (5) inverse of × 37 is ÷ 37

 iii. Put the value a = 6 into equation (1)

 iv. Rearrange to find the value of b

      30 + 3b= 18        note (6)
  30=30         
  
              3b=12        note (7)
  ÷3=÷3         
  
                b= 4

   Note: (6) inverse of + 30 is − 30
   Note: (7) inverse of × 3 is ÷ 3

 v. Verify put the value a = 6 and b = −4 into equation (2)

6.   Solve these equations by elimination

   7x + y = 67
   5x + y = 45

  answer: x = 11 and y = −10

7.   Solve these equations by elimination

   11x + y = 90
   8x + 7y = 78

 i. Label each equation

  Equation         Label
  11x+y=90         (1)
  8x+7y=78         (2)

 ii. Eliminate the y term, by changing one of the equations so that the y terms equate:

   77x+7y= 630      note (3)
  8x7y=78      note (2)
  
   69x      = 552      note (4)
  ÷69      =÷69       
  
       x       =     8

   Note: (3) = 7 × equation (1)
   Note: (2) subtract equation (2)
   Note: (4) inverse of × 69 is ÷ 69

 iii. Put the value x = 8 into equation (1)

 iv. Rearrange to find the value of y

      88 + y= 90        note (5)
  88=88         
  
              y=   2

   Note: (5) inverse of + 88 is − 88

 v. Verify put the value x = 8 and y = 2 into equation (2)

8.   Solve these equations by elimination

   12x + 4y = 84
   7x + 2y = 56

  answer: x = 14 and y = −21

to top menu   
go backback
   
to searchsearch
   back to:   examples    questions