High School Maths Examples and Questions

to top menu   
go backback
   
to searchsearch
   to Algebra   

Answers − Solving quadratics of the form x2 + bx + c = 0 by factorising first

1.   Solve x2 + 6x + 8 = 0

i. From answer 1 in Factorising Quadratics − 1 the factors are:
(x + 2)(x + 4)
ii. So (x + 2)(x + 4) = 0
iii. x + 2 = 0  =>  x = −2 Or
  x + 4 = 0  =>  x = −4  


2.   Find the values of x where x2 + 9x + 18 = 0

i. From answer 2 in Factorising Quadratics − 1 the factors are:
(x + 3)(x + 6)
ii. So (x + 3)(x + 6) = 0
iii. x + 3 = 0  =>  x = −3 Or
  x + 6 = 0  =>  x = −6  


3.   Solve x2 + x − 56 = 0

i. From answer 3 in Factorising Quadratics − 1 the factors are:
(x + 8)(x − 7)
ii. So (x + 8)(x − 7) = 0
iii. x + 8 = 0  =>  x = −8 Or
  x − 7 = 0  =>  x = 7  


4.   Find the values of x where x2 + 10x − 24 = 0

i. From answer 4 in Factorising Quadratics − 1 the factors are:
(x + 12)(x − 2)
ii. So (x + 12)(x − 2) = 0
iii. x + 12 = 0  =>  x = −12 Or
  x − 2 = 0  =>  x = 2  


5.   Solve x2 − 16x + 60 = 0

i. From answer 5 in Factorising Quadratics − 1 the factors are:
(x − 6)(x − 10)
ii. So (x − 6)(x − 10) = 0
iii. x − 6 = 0  =>  x = 6 Or
  x − 10 = 0  =>  x = 10  


6.   Find the values of x where x2 − 15x + 36 = 0

i. From answer 6 in Factorising Quadratics − 1 the factors are:
(x − 3)(x − 12)
ii. So (x − 3)(x − 12) = 0
iii. x − 3 = 0  =>  x = 3 Or
  x − 12 = 0  =>  x = 12  


7.   Solve x2 − 8x − 48 = 0

i. From answer 7 in Factorising Quadratics − 1 the factors are:
(x + 4)(x − 12)
ii. So (x + 4)(x − 12) = 0
iii. x + 4 = 0  =>  x = −4 Or
  x − 12 = 0  =>  x = 12  



to top menu   
go backback
   
to searchsearch
   back to:   examples    questions