High School Maths Examples and Questions

to top menu   
go backback
   
to searchsearch
   to Algebra   

Answers − Solving Equations 2

1.   If 42 + y = 20 + 3y     solve y

i. Subtract 20 from both sides

     42+y=  20+3y
     20  =20  
    
      22+y=       +3y

ii. Move y to one side. So subtract y from both sides

      22+y=       +3y
       y=       y
    
     22    =        2y

iii. Divide both sides by 2

     22    =        2y
    ÷2    =       ÷2
    
      11    =            y

iv. To verify, put the value of y = 11 back into the original equation:

    both sides are equal

2.   If 6 + 4b = 15 + b     solve b

i. Subtract 6 from both sides

     6+4b= 15+b
    6  =6  
    
        +4b= 9+b

ii. Move b to one side. So subtract b from both sides

        +4b= 9+b
        b=     b
    
          3b=  9

iii. Divide both sides by 3

          3b=  9
         ÷3= ÷3
    
              b=   3

iv. To check, put the value of b = 3 back into the original equation:

    both sides are equal

3.   If 37 + t = 2(26 + 3t)     what is the value of t?

i. Multiply the brackets on RHS

     37+t= 2(26+3t)      
    
     37+t= 52+6t

ii. Subtract 52 from both sides

     37+t= 52+6t
    52  =52  
    
    15+t=   6t

iii. Move t to one side. So subtract t from both sides

    15+t=   6t
      t=     t
    
    15    =       5t

iv. Divide both sides by 5

    15    =       5t
    ÷5    =      ÷5
    
     3     =          t

v. To verify, put the value of t = −3 back into the original equation:

    both sides are equal

4.   If 2(9 + y) = 4(7 + 3y)     what is the value of y?

i. Multiply the brackets on LHS and RHS

     2(9+y)= 4(7+3y)
    
     18+2y= 28+12y

ii. Subtract 28 from both sides

     18+2y= 28+12y
    28  =28  
    
    10+2y=   12y

iii. Move 2y to one side. So subtract 2y from both sides

    10+2y=   12y
      2y=     2y
    
    10      =       10y

iv. Divide both sides by 10

    10      =       10y
    ÷10      =      ÷10
    
     1       =            y

iv. To check, put the value of y = −1 back into the original equation:

    both sides are equal

5.   If 3(y − 120) = 5(y + 30)     what is the value of y?

i. Multiply the brackets on LHS and RHS

      3(y120)=  5(y+30)
    
      3y360  =  5y+150

ii. Subtract 150 from both sides

      3y360  =  5y+150
       150  =   150
    
     3y510  = 5y

iii. Move 3y to one side. So subtract 3y from both sides

     3y510  = 5y
    3y    =3y
    
          510   = 2y

iv. Divide both sides by 2

          510   = 2y
          ÷2   =÷2
    
          255   =   y

v. To verify, put the value of y = −255 back into the original equation:

    both sides are equal

6.  

If  

what is the value of b?

i. Multiply both sides by 7

             =7
         × 7    =× 7
    
    = 49
    
                  b − 15=49

ii. Add 15 to both sides

                  b − 15=49
                 + 15=+15
    
                  b       = 64

iii. To check, put the value of b = 64 back into the original equation:

    

7.  

If  

what is the value of y?

i. Multiply both sides by 12

               =−5
               × 12=× 12
    
    =−60
    
                     y − 10=−60

ii. Add 10 to both sides

                     y − 10=−60
                    + 10=+10
    
                     y       =−50

iii. To verify, put the value of y = −50 back into the original equation:

    

8.  

If  

what is the value of b?

i. Multiply both sides by 4

             =3(b + 10)
             × 4=× 4
    
    =12(b + 10)
    
                b12=12b+120

ii. Subtract 120 from both sides

                b12=12b+120
                120= 120
    
               b132=12b

iii. Subtract b from both sides

               b132=12b
             b  =−b
    
                 132=11b

iv. Divide both sides by 11

                 132=11b
                 ÷11=÷11
    
                   −12=   b

v. To check, put the value of b = −12 back into the original equation:

    both sides are equal

9.  

If  

what is the value of b?

i. Multiply both sides by 7

      6(17 + b)=
      × 7=× 7
    
    42(17 + b)=
    
     714+42b=−6+2b

ii. Subtract 714 from both sides

     714+42b=−6+2b
    714  =−714  
    
              42b=720+2b

iii. Subtract 2b from both sides

              42b=720+2b
             2b=  2b
    
              40b=720

iv. Divide both sides by 40

              40b=720
             ÷40=÷40
    
                   b= −18

v. To verify, put the value of b = −18 back into the original equation:

    both sides are equal

to top menu   
go backback
   
to searchsearch
   back to:   examples    questions